Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number.
نویسندگان
چکیده
Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.
منابع مشابه
Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation.
During the terminal differentiation of skeletal myoblasts, the activities of myogenic factors regulate not only tissue-specific gene expressions but also the exit from the cell cycle. The induction of cell cycle inhibitors such as p21 and pRb has been shown to play a prominent role in the growth arrest of differentiating myoblasts. Here we report that, at the onset of differentiation, activatio...
متن کاملCyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells
Satellite cells are mitotically quiescent myogenic stem cells resident beneath the basal lamina surrounding adult muscle myofibers. In response to injury, multiple extrinsic signals drive the entry of satellite cells into the cell cycle and then to proliferation, differentiation, and self-renewal of their downstream progeny. Because satellite cells must endure for a lifetime, their cell cycle a...
متن کاملCyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma.
In addition to their role in cell cycle progression, new data reveal an emerging role of D-type cyclins in transcriptional regulation and cellular differentiation processes. Using 3T3-L1 cell lines to study adipogenesis, we observed an up-regulation of cyclin D3 expression throughout the differentiation process. Surprisingly, cyclin D3 was only minimally expressed during the initial stages of a...
متن کاملAn expansion phase precedes terminal erythroid differentiation of hematopoietic progenitor cells from cord blood in vitro and is associated with up-regulation of cyclin E and cyclin-dependent kinase 2.
The dynamics of cell cycle regulation were investigated during in vitro erythroid proliferation and differentiation of CD34(+) cord blood cells. An unusual cell cycle profile with a majority of cells in S phase (70.2%) and minority of cells in G1 phase (27.4%) was observed in burst-forming unit-erythrocytes (BFU-E)-derived erythroblasts from a 7-day culture of CD34(+) cells stimulated with inte...
متن کاملL-arginine availability regulates T-lymphocyte cell-cycle progression.
L-arginine (L-Arg) plays a central role in several biologic systems including the regulation of T-cell function. L-Arg depletion by myeloid-derived suppressor cells producing arginase I is seen in patients with cancer inducing T-cell anergy. We studied how L-Arg starvation could regulate T-cell-cycle progression. Stimulated T cells cultured in the absence of L-Arg are arrested in the G0-G1phase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 26 18 شماره
صفحات -
تاریخ انتشار 2012